Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging
نویسندگان
چکیده
Abstract: The cross-range resolution of forward-looking phase array radar (PAR) is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods.
منابع مشابه
Forward-looking Imaging of Scanning Phas- Ed Array Radar Based on the Compressed Sensing
In this paper, a novel forward-looking imaging method based on the compressed sensing is proposed for scanning phased array radar (PAR) in order to improve the azimuth resolution. Firstly, the echo of targets is modeled according to the principle of PAR. Then, it is analyzed why some of the former methods as multi-channel deconvolution are ineffective based on the signal model. Using a widely a...
متن کاملForward Looking Radar Imaging by Truncated Singular Value Decomposition and Its Application for Adverse Weather Aircraft Landing
The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present ...
متن کاملAn Iterative Shrinkage Deconvolution for Angular Super-Resolution Imaging in Forward-Looking Scanning Radar
The aim of angular super-resolution is to surpass the real-beam resolution. In this paper, a method for forward-looking scanning radar angular super-resolution imaging through a deconvolution method is proposed, which incorporates the prior information of the target’s scattering characteristics. We first mathematically formulate the angular super-resolution problem of forward-looking scanning r...
متن کاملAugmented Lagrangian method for angular super-resolution imaging in forward-looking scanning radar
Angular super-resolution imaging in the forward-looking area of a scanning radar platform plays an important role in the application of scanning radar. However, the angular resolution of scanning radar is limited by the system parameters. Thus, improving the angular resolution of scanning radar beyond the limitation of the given system parameters is desired. We present an angular super-resoluti...
متن کاملSuperresolution Imaging for Forward-Looking Scanning Radar with Generalized Gaussian Constraint
A maximum a posteriori (MAP) approach, based on the Bayesian criterion, is proposed to overcome the low cross-range resolution problem in forward-looking imaging. We adapt scanning radar system to record received data and exploit deconvolution method to enhance the real-aperture resolution because the received echo is the convolution of target scattering coefficient and antenna pattern. The Gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017